Roles of prostaglandin I(2) and thromboxane A(2) in cardiac ischemia-reperfusion injury: a study using mice lacking their respective receptors.
نویسندگان
چکیده
BACKGROUND Prostaglandin (PG) I(2) and thromboxane (TX) A(2), the most common prostanoids in the cardiovascular system, are produced abundantly during cardiac ischemia/reperfusion (I/R); their roles in I/R injury, however, remain undetermined. We intended to clarify these roles of PGI(2) and TXA(2) using mice lacking the PGI(2) receptor, IP(-/-) mice, or the TXA(2) receptor, TP(-/-) mice. METHODS AND RESULTS The left anterior descending coronary artery was occluded for 1 hour and then reperfused for 24 hours. The size of myocardial infarct in IP(-/-) mice was significantly larger than that in wild-type mice, although the size of the area at risk was similar between the 2 groups of mice. In contrast, there was no such difference between TP(-/-) and wild-type mice. To further determine whether PGI(2) and TXA(2) act directly on the cardiac tissue or indirectly through their action on blood constituents, we perfused excised heart according to the Langendorff technique. The isolated heart was then subjected to global ischemia followed by reperfusion. In IP(-/-) mice, developed tension and coronary flow rate during reperfusion were significantly lower and release of creatine kinase was significantly higher than those in wild-type mice. There were no such differences, however, between TP(-/-) and wild-type mice. CONCLUSIONS PGI(2), which was produced endogenously during cardiac I/R, exerts a protective effect on cardiomyocytes independent of its effects on platelets and neutrophils. In contrast, TXA(2) has little role in the cardiac I/R injury.
منابع مشابه
Roles of cyclooxygenase-2 and prostacyclin/IP receptors in mucosal defense against ischemia/reperfusion injury in mouse stomach.
We examined the roles of cyclooxygenase (COX) isozymes, prostaglandins (PGs), and their receptors in the mucosal defense against ischemia/reperfusion (I/R)-induced gastric lesions in mice. Male C57BL/6 mice, including wild-type animals and those lacking prostaglandin E(2) (EP)1, EP3, or prostaglandin I(2) (IP) receptors, were used after 18 h of fasting. Under urethane anesthesia, the celiac art...
متن کاملCandesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats
Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...
متن کاملThe protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملEvaluation of Cardiac Hemodynamic Parameters Following Ischemia-Reperfusion Injury in a Rat Model of Polycystic Ovary Syndrome
Introduction: Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women during reproductive ages. This syndrome is associated with disruption of sex hormone levels. Studies have shown that endurance of the heart to ischemia-reperfusion (I/R) injury can be affected by sex hormones. In the present study, the rate of cardiac tolerance against I/R injury in the PCOS ra...
متن کاملTiliacora triandra (Colebr.) Diels leaf extract enhances spatial learning and learning flexibility, and prevents dentate gyrus neuronal damage induced by cerebral ischemia/reperfusion injury in mice
Objective: The present study investigated the effects of a local Thai vegetable, Tiliacora triandra (Colebr.) Diels, also known as Yanang, against cerebral ischemia/reperfusion injury in mice. Materials and Methods: Thirty male ICR mice were divided into three experimental groups of BLCCAO + 10% Tween 80, BLCCAO + T. triandra 300 mg/kg, and BLCCAO + T. triandra 600 mg/kg. Cerebral ischemia/repe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 104 18 شماره
صفحات -
تاریخ انتشار 2001